Y=AsinB(x-c)+D

$$Amp = A = \frac{Max - Min}{2}$$

$$Vertical = (C) = \frac{Max + Min}{2}$$

$$period = p$$

Horizontal Stretch/Shrink

$$B = \frac{2\pi}{p}$$

How to choose an appropriate model based on the behavior at some given time, T.

 $y = A \cos B(t - T) + C$ if at time T the function attains a maximum value

 $y = -A \cos B(t - T) + C$ if at time T the function attains a minimum value

 $y = A \sin B(t - T) + C$ if at time T the function halfway between a minimum and a maximum value

 $y = -A \sin B(t-T) + C$ if at time T the function halfway between a maximum and a minimum value

Construct a sinusoid with the given amplitude and period that goes through the given point.

A) Amp: 4, period
$$4\pi$$
, point $(0, 0)$

$$A = 4 \quad B(Per) = (2\pi R) R$$

$$\frac{B \cdot P_{er} = 2\pi}{P_{er}}$$

$$B = \frac{2\pi}{P_{er}}$$

$$B = \frac{2\pi}{4\pi} = \frac{1}{2}$$

$$B = \frac{2\pi}{4\pi} = \frac{1}{2}$$

B) Amp: 2.5, period $\frac{\pi}{5}$, point (2, 0)

$$B = \frac{2\pi}{Per}$$

$$= \frac{2\pi}{5} \frac{2\pi}{5} \cdot \frac{5}{7} = 10$$

$$V = 2.5 \sin 10 (x-2)$$

AcosB(x-c)+D

$$Amp = A = \frac{Max - Min}{2}$$

$$Vertical = (\mathbf{D}) = \frac{Max + Min}{2}$$

period = p

Horizontal Stretch/Shrink

$$B = \frac{2\pi}{p}$$

How to choose an appropriate model based on the behavior at some given time, T.

 $y = A \cos B(t - T) + C$ if at time T the function attains a maximum value

 $y = -A \cos B(t - T) + C$ if at time T the function attains a minimum value

y = A sin B(t - T) + C if at time T the function halfway between a minimum and a maximum value

 $y = -A \sin B(t - T) + C$ if at time T the function halfway between a maximum and a minimum value

Example 7: Calculating the Ebb and Flow of Tides

9.6

One particular July 4th in Galveston, TX, high tide occurred at 9:36 am. At that time the water at the end of the 61st Street Pier was 2.7 meters deep. Low tide occurred at 3:48 p.m, at which time the water was only 2.1 meters deep. Assume that the depth of the water is a sinusoidal function of time with a period of half a lunar day (about 12 hrs 24 min)

a) Model the depth, D, as a sinusoidal function of time, t, algebraically then graph the function. $3 = \frac{2\pi}{R_{ex}} = \frac{2\pi}{12.4}$

$$A = \frac{2.7 - 2.1}{2} = .3$$

)2.4 TI

 $Vertical Shift = \frac{2.7+2.1}{2} = 2.4$

b) At what time on the 4th of July did the first low tide occur.

c) What was the approximate depth of the water at 6:00 am and at 3:00 pm?

6:00 cm -> 2.3

d) What was the first time on July 4th when the water was 2.4 meters deep?

80) Temperature Data: The normal monthly Fahrenheit temperatures in Helena, MT, are shown in the table below (month 1 = January)

Model the temperature T as a sinusoidal function of time using 20 as the minimum value and 68 as the maximum value. Support your answer graphically by graphing your function with a scatter plot.

M	1	2	3	4	5	6	7 68	8	9	10	11	12
T	20	26	35	44	53	61	68	67	56	45	31	21